
The following SQL command was issued at approximately 10:00 AM on the database server machine. The output produced is also displayed below.
SQL> SELECT SYSDATE T1, TRUNC(SYSDATE) T2, ROUND(SYSDATE) T3 FROM dual;
T1 T2 T3--------- --------- ---------10-MAR-11 10-MAR-11 10-MAR-11
Which of the following statements which are TRUE regarding this SELECT statement and its corresponding
output? (Choose all that apply).

Explanation:
The values T1, T2, and T3 are all dates. Therefore, Oracle maintains the necessary details to store in the
database any specific second in the date/time range between January 1, 4712 BC and December 31, 9999 AD. That means Oracle maintain the following details for dates:

l the AD or BC indicator
l the century
l the year
l the month
l the day
l the hour
l the minute
l the second

This level of detail was stored into the DATE data type column or variable at the time the column or variable was
inserted into the table. Since many users do not provide that level of detail when storing a date, Oracle provides several default values. If you inserted 25-Dec-11 into a column called hiredate, the day would be 25, the month
would be December, and the year would be 11. However, by default the database includes the fact that the AD/BC indicator is AD, the century is the current century, and the hours, minutes, and seconds are all zero. If you stored SYSDATE for someone's hiredate, the value stored would depend upon when you issued the command,

Item: 1 (Ref:1Z0-061.5.3.1)

The actual value for T1 also includes the century, the hour, the minute, and the second.
The actual values for T1, T2, and T3 are all different, even though their output is identical.
If you subtracted T3 from T2, the result would be the whole number zero (0).
If you added 12 to T1, the output displayed for that result would be 10-MAR-12.
If you reissued the same SQL statement 3 hours later, the output displayed for T1 and T2 would be the
same, but the output for T3 would be 11-MAR-11.

Answer:
The actual value for T1 also includes the century, the hour, the minute, and the
second.
If you subtracted T3 from T2, the result would be the whole number zero (0).
If you reissued the same SQL statement 3 hours later, the output displayed for T1 and T2
would be the same, but the output for T3 would be 11-MAR-11.

1Z0-061: Conversion and Conditionals

but it would look similar to March 10, 2011 AD at 9 hours, 32 minutes, and 17 seconds past midnight.
The following is true for each of the values:

l T1 is SYSDATE, so it has stored all the detail down to the second of when the user issued the statement.
l T2, which is the TRUNC of T1, will store the same value as T1 except where you drop (truncate) the

hour/minute/second component of T1, you will change the time component (hours, minutes, second) of the column back to 0/0/0, which is midnight of the same date.
l T3 is the round of T1, so you have to decide whether the original date you are given, which in this case is SYSDATE, is closer to midnight of the current day or closer to midnight of the following. If the date falls

before noon, rounding SYSDATE will set you equal to midnight of the same day (just like TRUNC). If the
date falls after noon, rounding SYSDATE will set it as equal to midnight of the next day.

l If the SELECT is issued at 10:00 AM, the values for T2 and T3 will both be equal to midnight of the same
day on which the SELECT was issued. If the SELECT is issued any time after noon, the value of the
truncated SYSDATE will be midnight of the current day, but the value of the rounded SYSDATE will be
midnight of the next day.

A number can be added to a column or a variable defined as a date. This operation will add the number of days represented by that number to the given date, producing another date as the result. The number represents the number of days being added, not the number of months.
If a date field were inserted without a time component, the time component would default to zero. For example, if you inserted 04-Jul-07, then the stored value will be July 4 2007 AD at 0 hours, 0 minutes, and 0 seconds past
midnight. Consequently, if you added the number 1.5 to the date, the internal value for the result will be July 5 2007 AD at noon.

1Z0-061: Conversion and Conditionals

The transaction table contains these columns:
SQL> DESCRIBE transactionTRANSACTION_ID NUMBER(9)TRANS_CODE VARCHAR2(5)CUST_ACCOUNT VARCHAR2(12)
A new standard was adopted in your department affecting reports produced by querying the transaction table. When creating reports, a dash (-) followed by the three characters ANI must be appended to all transaction codes
that contain only three characters. Any leading 'W' in a transaction code must be removed from the resulting data display.
Which query will return the desired results?

Explanation:
The following query will return the desired results:
SQL> SELECT TRIM(LEADING 'W' FROM (RPAD(trans_code, 7, '-ANI')))FROM transaction WHERE LENGTH(trans_code) = 3;
The query first limits the values it will return. The WHERE clause limits the rows returned to only rows that have a
trans_code with a length of 3. The characters '-ANI' are appended to the value using the RPAD function. If the
first character in the trans_code is a 'W', the TRIM function will remove it from it from the query results. The
LEADING keyword can also be used returning the same results, as in:
TRIM(LEADING 'W' FROM (RPAD(trans_code, 7, '-ANI')))
The LENGTH function returns the number of characters in a value (column or character string). The returned value
is of a NUMBER data type. If the column or expression is null, NULL is returned. The LENGTH character function
may be used in a SELECT list or in a WHERE clause condition, such as WHERE LENGTH(trans_code) = 3, to
restrict the results of a query to columns having a specified length. The syntax of the LENGTH function is:
LENGTH(column|expression)
The RPAD character function returns a left-justified value with a string of characters replicated as many times as
necessary to create a value that is of a specified length (n). The syntax of the RPAD function is:
RPAD(column|expression, n, 'string')

Item: 2 (Ref:1Z0-061.5.3.6)

SELECT TRIM('W' (RPAD(trans_code, 7, '-ANI')))FROM transaction WHERE LENGTH(trans_code) = 3;
SELECT TRIM('W' FROM (RPAD(trans_code, 3, '-ANI')))FROM transaction WHERE LENGTH(trans_code) = 3;
SELECT TRIM(LEADING 'W' FROM (RPAD(trans_code, 7, '-ANI')))FROM transaction WHERE LENGTH(trans_code) = 3;
SELECT TRIM(LEADING 'W' FROM (RPAD(trans_code, 3, '-ANI')))FROM transaction WHERE LENGTH(trans_code) = 3;

Answer:
SELECT TRIM(LEADING 'W' FROM (RPAD(trans_code, 7, '-ANI')))FROM transaction WHERE LENGTH(trans_code) = 3;

1Z0-061: Conversion and Conditionals

The TRIM character function is used to trim leading, trailing, or both leading and trailing characters from a value.
Character literals must be enclosed in single quotes. When the LEADING, TRAILING, or BOTH keywords are
omitted, the default behavior is to trim the leading and trailing characters. The syntax of the TRIM function is:
TRIM(LEADING|TRAILING|BOTH, trim_character FROM column|expression)
The statement that does not include the FROM keyword will fail. The FROM clause is required for all SELECT
statements.
The statements containing SELECT TRIM(LEADING 'W' FROM (RPAD(trans_code, 3, '-ANI'))) and
SELECT TRIM('W' FROM (RPAD(trans_code, 3, '-ANI'))) execute successfully, but do not return the
desired results.

1Z0-061: Conversion and Conditionals

The Product table contains these columns:
SQL> DESCRIBE ProductPRODUCT_ID NUMBER(9)DESCRIPTION VARCHAR2(20)COST NUMBER(5,2)MANUFACTURER_ID VARCHAR2(10)QUANTITY NUMBER(5)
Evaluate these two statements.
Statement 1:SQL> SELECT NVL(100/quantity, 'none')FROM Product;
Statement 2:SQL> SELECT NVL(TO_CHAR(100/quantity), 'none') FROM Product;
Which of the following statements is TRUE?

Explanation:
Statement 2 executes successfully, but Statement 1 causes an ORA-01722: invalid number error because
the data types are incompatible. If the expression 100/quantity is evaluated and returns a null value, the null
value will not be replaced by the character string none in the query results because the quantity column has a
NUMBER data type and none is a character value. This statement will fail even if there are no null quantity values
because of the incompatible data types. The solution is to convert the quantity column data into character data:
SELECT NVL(TO_CHAR(100/quantity), 'none')
Statement 2 does not cause an error when quantity values are null. The use of the NVL function accompanied by
the TO_CHAR conversion function ensures that the text none is displayed when the value of 100/quantity is
unknown (NULL). Statement 2 executes successfully, displaying the value 'none' in the place of null values.
The NVL single row function is used to convert a null to an actual value and can be used on any data type,
including VARCHAR2 columns. The syntax of the NVL function is:
NVL(expression1, expression2)
If expression1 is null, NVL returns expression2. If expression1 is not null, NVL returns expression1. The
expression1 and expression2 arguments can be of any data type. When the expression data types differ,
Oracle converts expression2 to the data type of expression1 before the two expressions are compared.

Item: 3 (Ref:1Z0-061.5.3.5)

Both statements execute successfully.
Statement 1 will fail because the data types are incompatible.
Statement 2 causes an error when quantity values are null.
Statement 1 executes, but does not display the value 'none' for null values.

Answer:
Statement 1 will fail because the data types are incompatible.

1Z0-061: Conversion and Conditionals

1Z0-061: Conversion and Conditionals

Examine the data in the TEACHER table.

Assume the user enters the following SELECT statement to retrieve data from the TEACHER table:
SQL> SELECT *FROM teacherWHERE INSTR(subject_id, '&1') = 4AND LOWER(subject_id) LIKE 'HST%';
When prompted for the WHERE clause value, you enter an underscore (_).
Which result will this statement provide?

Explanation:
This statement will execute, but it will not retrieve any data. In the second condition of the WHERE clause, the
values in the subject_id column are converted to lowercase and then compared to a character string in
uppercase, which results in no rows being returned. Since this condition is ALWAYS FALSE, and this condition is joined by an AND with the first condition, the compound condition will be ALWAYS FALSE as well. Consequently,
the truth value of the first condition does not need to be evaluated to answer this question. A SELECT statement in
which the WHERE clause is ALWAYS FALSE will always give the results "no rows returned".
To display information on only teachers whose subject_id begins with 'HST', you could add AND subject_id
LIKE 'HST%' to the WHERE clause. To display the same information regardless of the case in which the
subject_id is stored, you could add AND UPPER(subject_id) LIKE 'HST%' to the WHERE clause.
The UPPER character function converts a mixed case or lowercase value (a column or expression) to uppercase.
The syntax of the UPPER character function is:
UPPER(column|expression)

Item: 4 (Ref:1Z0-061.5.3.7)

It will execute, but it will not retrieve any data.
It will display information on all teachers whose subject_id begins with HST_.
It will return a syntax error because the TO_CHAR function was not used in the WHERE clause.
It will display information on all teachers whose subject_id begins with HST_, regardless of the case in
which the subject_id is stored.

Answer:
It will execute, but it will not retrieve any data.

1Z0-061: Conversion and Conditionals

The LOWER character function converts a mixed case or uppercase value (a column or expression) to lowercase.
The syntax of the LOWER character function is:
LOWER(column|expression)
The INSTR character function is used to find the position of an occurrence of a string of characters within a
column value or an expression. The Oracle Server begins its character string search at an integer identifying a character in the supplied column value or expression (m). The search will continue for a particular occurrence of the string indicated by an integer (n). The syntax of the INSTR function is:
INSTR(column|expression, 'string' [, m] [, n])

1Z0-061: Conversion and Conditionals

The employee table contains a column called first_name and a column called last_name. Both columns
have been defined as VARCHAR2(25). You want to create a username for the employee that is comprised of all
lowercase characters. It will be derived by taking the first character of the first name followed by the full last name. As an example, if first_name is jOhn and the last_name is sMitH, the username would be jsmith.
However, there is an 8-character maximum for usernames. Which one of the following SELECT statements will
correctly produce the username for each employee? (Choose all that apply.)

Explanation:
A variety of functions are used in the various answers.
The LOWER(SUBSTR(first_name,1,1) expression would extract the first character of the first_name. Then
that character would be converted to lowercase (if it wasn't already lower case).
The LOWER(SUBSTR(last_name,1,7) expression would extract the first seven characters of last_name. If
there are fewer than seven characters, it would take all that are available. It then converts any uppercase characters to lowercase.
The LTRIM('abcdefg','ab') expression will take the first argument (string) and remove zero (0) or more
occurrences of the second argument (string), starting at the far left of argument 1. Whatever is left of argument 1 is the value this function returns.
a || b || c will concatenate together the strings a, b, and c. This is not the use of a function, but rather the
use of the || operator. There is no practical limit to the number of items that can be concatenated together using the ||.
CONCAT(a,b) will concatenate together a followed by b. The CONCAT function limits you to concatenating two
items together at a time.
In the statement SELECT first_name, last_name,LOWER(CONCAT(LTRIM(first_name,1),SUBSTR
(last_name,1,7) username FROM employee e2, the LTRIM function is being used, but it will not return the

Item: 5 (Ref:1Z0-061.5.3.2)

SELECT first_name, last_name, LOWER(SUBSTR(first_name,1,1))||LOWER(SUBSTR(last_name,1,7)) username FROM employee e1
SELECT first_name, last_name,LOWER(CONCAT(LTRIM(first_name,1),SUBSTR(last_name,1,7) username FROM employee e2
SELECT first_name, last_name, LOWER(CONCAT(SUBSTR(first_name,1,1),SUBSTR(last_name,1,7))) username FROM employee e3
SELECT first_name, last_name,CONCAT(LOWER(SUBSTR(first_name,1,1)),LOWER(SUBSTR(last_name,1,7))) username FROM employee e4
SELECT first_name, last_name, LOWER(CONCAT(SUBSTR(first_name,1,1)||SUBSTR(last_name,1,7))) username FROM employee e5

Answer:
SELECT first_name, last_name, LOWER(SUBSTR(first_name,1,1))||LOWER(SUBSTR(last_name,1,7)) username FROM employee e1
SELECT first_name, last_name, LOWER(CONCAT(SUBSTR(first_name,1,1),SUBSTR(last_name,1,7))) username FROM employee e3
SELECT first_name, last_name,CONCAT(LOWER(SUBSTR(first_name,1,1)),LOWER(SUBSTR(last_name,1,7))) username FROM employee e4

1Z0-061: Conversion and Conditionals

first character of first_name. Hence, this statement will not produce a username in the required format.
In the statement SELECT first_name, last_name, LOWER(CONCAT(SUBSTR(first_name,1,1)
||SUBSTR(last_name,1,7))) username FROM employee e5, the SUBSTR function is used properly to
extract the appropriate character from first_name and the appropriate characters from last_name. Then they
are properly combined by the || operator, resulting in a single value. However, that single value now exists as
the argument in a CONCAT function. Because the CONCAT function requires two arguments, not one, the
command contains a syntax error.
All three of the remaining answers are correct because they perform the three tasks required to create the username. These are:

1. Strip of the first character of first name and strip off the first seven characters of last name.2. Concatenate those two things together.3. Force the result into lower case.
You can perform step 2 using either the CONCAT function or the || operator. Step 3 can be performed before step
1, after step 1 but before step 2, or after step 2. You actually should be able to come up with six different ways to write this command to obtain the correct result.

1Z0-061: Conversion and Conditionals

The current date is January 1, 2009. You need to store this date value:
19-OCT-99
Which statement about the date format for this value is TRUE?

Explanation:
If the current year is 2009, the RR date format will interpret 19-OCT-99 as the year 1999. The century recognized by the RR date format varies depending on the specified two-digit year and the last two digits of the current year. The default date display is DD-MON-RR. The RR format allows you to store 21st century dates in the 20th century
by specifying only the last two digits of the year, and allows you to store 20th century dates in the 21st century the same way.
The YY date format will interpret 19-OCT-99 as the year 2099. This date format will interpret only the current
century, in this example the 21st century.

Item: 6 (Ref:1Z0-061.5.2.2)

Both the YY and RR date formats will interpret the year as 1999.
Both the YY and RR date formats will interpret the year as 2099.
The RR date format will interpret the year as 2099, and the YY date format will interpret the year as 1999.
The RR date format will interpret the year as 1999, and the YY date format will interpret the year as 2099.

Answer:
The RR date format will interpret the year as 1999, and the YY date format will interpret the year as 2099.

1Z0-061: Conversion and Conditionals

The student table contains these columns:
SQL> DESCRIBE studentID NUMBER(9) LAST_NAME VARCHAR2(25)FIRST_NAME VARCHAR2(25)ENROLL_DATE DATE
You need to display the enroll_date values in this format:
25th of February 2011
Which SELECT statement should you use?

Explanation:
You should use the following SELECT statement:
SQL> SELECT TO_CHAR(enroll_date, 'ddth "of" Month YYYY')FROM student;
The TO_CHAR function converts the date value to a character value in order to display the date value in a
specified format. The dd portion of the format model represents the day of the month, followed by th (displayed
as 25th). Month represents the month of the year (February) and YYYY represents all of the digits of the year
(2011). The use of upper and lower case characters are significant in the format mask.
The TO_CHAR conversion function converts a date or number value to a VARCHAR2 character string using a
format model. When a format is not provided, the default date format is used. The syntax of the TO_CHAR function
is:
TO_CHAR(date|number [, 'fmt'])
The SELECT statement that does not include the TO_CHAR function fails because the TO_CHAR function is
omitted. Without the conversion of the enroll_date to a character value, no format can be applied to the
display of the query results.
The statement containing SELECT TO_CHAR(enroll_date, 'DDTH "of" Month YYYY') returns the enroll
date is this format: 25TH of February 2011.

Item: 7 (Ref:1Z0-061.5.2.5)

SELECT enroll_date('DDspth "of" Month YYYY')FROM student;
SELECT TO_CHAR(enroll_date, 'ddth "of" Month YYYY')FROM student;
SELECT TO_CHAR(enroll_date, 'DDTH "of" Month YYYY')FROM student;
SELECT TO_CHAR(enroll_date, 'DDspth 'of' Month YYYY')FROM student;

Answer:
SELECT TO_CHAR(enroll_date, 'ddth "of" Month YYYY')FROM student;

1Z0-061: Conversion and Conditionals

The statement containing SELECT TO_CHAR(enroll_date, 'DDspth 'of' Month YYYY') displays the
enroll date is this format: TWENTY-FIFTH of February 2011.

1Z0-061: Conversion and Conditionals

Calculate the value returned by this SELECT statement:
SQL> SELECT ROUND(16.9) - TRUNC(4.8) - MOD (41,14) FROM dual;

Explanation:
The correct answer is zero (0).
ROUND(16.9) means to round the number to 0 decimal places, or the nearest whole number. That would be 17.
This function can have two arguments, but if it only has one then the second argument defaults to zero (0).
TRUNC(4.8) means to truncate the number 4.8 to 0 decimal places, or the greatest whole number that is less
than or equal to 4.8. That would be 4.
MOD(41,14) means to take the remainder when 41 is divided by 14. The number 41 divided by 14 gives an
answer of 2 with a remainder of 13, so 13 is the result of this function. The whole number portion of the result of the division problem is discarded, only the remainder is important.
Putting the individual values into the expression yields 17 - 4 - 13, which equals 0.
Since 0 is the right answer, all other values must be incorrect.

Item: 8 (Ref:1Z0-061.5.3.3)

2
-2
0
13
-1

Answer:
0

1Z0-061: Conversion and Conditionals

The student table contains these columns:
SQL> DESCRIBE studentID NUMBER(9) LAST_NAME VARCHAR2(25)FIRST_NAME VARCHAR2(25)ENROLL_DATE DATE
You need to create a report to display a student's enrollment date and projected graduation date.
These are the desired results:

l Prompt the user for a student ID.
l Display the student's first name, last name, and date of enrollment.
l Display the student's projected graduation date by adding four years to the enrollment date value.

Which statement produces all three of the desired results?

Explanation:
The following statement produces all three desired results:
SQL> SELECT CONCAT(INITCAP(first_name), INITCAP(last_name)), TO_CHAR(enroll_date, 'DD MONTH YYYY'), ADD_MONTHS(enroll_date, 48) grad_dateFROM studentWHERE id = &id;

Item: 9 (Ref:1Z0-061.5.2.1)

SELECT CONCAT(INITCAP(first_name), INITCAP(last_name)), TO_CHAR(ADD_MONTHS(enroll_date, 48), 'DD MONTH YYYY') grad_dateFROM studentWHERE id = &id;
SELECT CONCAT(INITCAP(first_name), INITCAP(last_name)), TO_CHAR(enroll_date, 'DD MONTH YYYY'), ADD_MONTHS(enroll_date, 48) grad_dateFROM studentWHERE id = &id;
SELECT INITCAP(first_name)||INITCAP(last_name), TO_CHAR(enroll_date, 'DD MONTH YYYY'), ADD_YEARS(enroll_date, 4) grad_dateFROM studentWHERE id = &id;
SELECT INITCAP(first_name)||INITCAP(last_name) student_name, TO_CHAR(enroll_date, 'DD MONTH YYYY') date_enrolled, TO_CHAR(ADD_MONTHS(enroll_date, 4), 'DD MONTH YYYY') grad_dateFROM studentWHERE id = &id;

Answer:
SELECT CONCAT(INITCAP(first_name), INITCAP(last_name)), TO_CHAR(enroll_date, 'DD MONTH YYYY'), ADD_MONTHS(enroll_date, 48) grad_dateFROM studentWHERE id = &id;

1Z0-061: Conversion and Conditionals

The user is prompted for the student ID because a substitution variable is used, and the student's first name, last name, and date of enrollment are displayed. The third result is also achieved by using 48 months, which represents four years, with the ADD_MONTHS function. This displays the projected graduation date.
The statement that passes a value of 4 to the ADD_MONTHS function is incorrect. This statement achieves the first
two desired results, but not the third. It will return a projected graduation date that is four months later than the enrollment date.
The following statement achieves the first two desired results, but not the third because the date of enrollment is not queried:
SQL> SELECT CONCAT(INITCAP(first_name), INITCAP(last_name)), TO_CHAR(ADD_MONTHS(enroll_date, 48), 'DD MONTH YYYY') grad_date;
The SELECT statement containing the ADD_YEARS function fails because ADD_YEARS is not a valid SQL function.

1Z0-061: Conversion and Conditionals

Which three function descriptions are TRUE? (Choose three.)

Explanation:
The following function descriptions are true:

l The NVL single-row function can be used on VARCHAR2 columns.
l The LENGTH character function returns the number of characters in an expression.
l The TRUNC date function returns a date with the time portion of the day truncated to the specified format

unit.
The NVL single-row function is used to convert a null to an actual value and can be used on any data type
including VARCHAR2 columns. The syntax for the NVL function is:
NVL(expression1, expression2)
If expression1 is null, NVL returns expression2. If expression1 is not null, NVL returns expression1. The
expression1 and expression2 arguments can be of any data type. When the expression data types differ,
Oracle converts expression2 to the data type of expression1 before the two expressions are compared.
The LENGTH function returns the number of characters in an expression (column or character string). The value
returned is of NUMBER data type. If the column or expression is null, NULL is returned. The syntax of the LENGTH
function is:
LENGTH(column|expression)
The TRUNC date function returns a date with the time portion of the day truncated to the specified format unit. If no
format model ('fmt') is provided, the date is truncated to the nearest day. TRUNC may be used as either a date or
a number function. The syntax of the TRUNC function is:
TRUNC(column|expression, 'fmt')

Item: 10 (Ref:1Z0-061.5.1.1)

The SYSDATE function returns the local machine date and time.
The NVL single-row function can be used on VARCHAR2 columns.
The LENGTH character function returns the number of characters in an expression.
The ROUND number function returns a number rounded to the specified column value.
The TRUNC date function returns a date with the time portion of the day truncated to the specified format unit.
The SUBSTR character function replaces a portion of a string, beginning at a defined character position for a
defined length.

Answer:
The NVL single-row function can be used on VARCHAR2 columns.
The LENGTH character function returns the number of characters in an
expression.
The TRUNC date function returns a date with the time portion of the day truncated
to the specified format unit.

1Z0-061: Conversion and Conditionals

The SYSDATE function returns the current database server date and time as a DATE data type. It does not return
the host machine date and time. This function requires no arguments.
The ROUND number function does not return a number rounded to the specified column value. The ROUND function
is used to round values to a specified number of decimal places. When an integer representing the number of decimal places to be used (n) is not provided, the number is rounded to zero (0) places. ROUND may be used as
either a number or a date function. The syntax of the ROUND function is:
ROUND(column|expression, n)
The SUBSTR character function does not replace a portion of a string but instead returns a portion of a string,
beginning at a specified position (m) and ending at a specified substring length (n). A position of zero (0) is treated as a 1. When the substring length is not provided, Oracle returns all of the characters to the end of the string. Null is returned when a substring length is less than 1. The syntax of the SUBSTR function is:
SUBSTR(column|expression, m, [, n])

1Z0-061: Conversion and Conditionals

Seniority is based on the number of years a student has been enrolled at the university. You must create a report that displays each student's name, ID number, and the number of years enrolled. The years enrolled must be rounded to a whole number, based on the number of months from the date enrolled until today.
Which statement produces the required results?

Explanation:
The following statement produces the required results:
SQL> SELECT first_name||', '||last_name "Student Name", id "Id", enroll_date, ROUND(MONTHS_BETWEEN(SYSDATE, enroll_date) / 12) "Seniority"FROM student;
The MONTHS_BETWEEN function determines the number of months between two dates. In this scenario, the
number of months between today, SYSDATE, and the date a student is enrolled, enroll_date, will be
determined. The resulting value is then divided by 12 to return a year value. The ROUND function rounds the year
value to the nearest integer.
When you are using the MONTHS_BETWEEN date function, the value returned is positive when date1 is later than
date2. The value returned is negative when date1 is earlier than date2. The syntax of the MONTHS_BETWEEN
function is:
MONTHS_BETWEEN(date1, date2)
The SYSDATE function returns the current data and time as a DATE data type. This function requires no
arguments and returns the date and time of the database server.
The ROUND number function is used to round values to a specified decimal value. When an integer representing
the number of decimal places to be used (n) is not provided, the number is rounded to 0 places. ROUND may be

Item: 11 (Ref:1Z0-061.5.3.8)

SELECT first_name||', '||last_name "Student Name", id "Id", enroll_date, ROUND(SYSDATE) - ROUND(enroll_date) "Seniority"FROM student;
SELECT first_name||', '||last_name "Student Name", id "Id", enroll_date,
(ROUND(SYSDATE) - ROUND(enroll_date)) / 12 "Seniority"FROM student;
SELECT first_name||', '||last_name "Student Name", id "Id", enroll_date,
TRUNC(SYSDATE, 'YY') - TRUNC(enroll_date, 'YY') "Seniority"FROM student;
SELECT first_name||', '||last_name "Student Name", id "Id", enroll_date,
ROUND(MONTHS_BETWEEN(SYSDATE, enroll_date) / 12) "Seniority"FROM student;

Answer:
SELECT first_name||', '||last_name "Student Name", id "Id", enroll_date,
ROUND(MONTHS_BETWEEN(SYSDATE, enroll_date) / 12) "Seniority"FROM student;

1Z0-061: Conversion and Conditionals

used as either a number or a date function. The syntax of the ROUND number function is:
ROUND(column|expression, n)
The TRUNC date function returns a date with the time portion of the day truncated to the specified format ('fmt').
If no format is provided, the date is truncated to the nearest day. TRUNC may be used as either a date or a
number function. The syntax of the TRUNC date function is:
TRUNC(date, [, 'fmt'])
The statement that uses ROUND(SYSDATE) - ROUND(enroll_date) will round the date values to the nearest
day and then subtract today's date from the date enrolled.
The statement that uses (ROUND(SYSDATE) - ROUND(enroll_date)) / 12 will round the date values to
the nearest day and then subtract today's date from the date enrolled. This value will be divided by 12.
The statement that uses TRUNC(SYSDATE, 'YY') - TRUNC(enroll_date, 'YY') will truncate each value
to a two-digit year and subtract the date enrolled from today's date. This will not retrieve accurate results because only a two-digit year is used.

1Z0-061: Conversion and Conditionals

Examine the following EMPLOYEE table structure and data:
Employee table (structure):

EMPLOYEE table (data):

From the EMPLOYEE table, you must produce a report that shows each employee's name and the number of
years each employee has worked for the company. Assume continuous employment since their hire dates. For this report, the employees should be sorted such that the person with the most seniority is first. Years of employment should be rounded to one decimal place.
A few employees do not yet have a hire date because they just received a job offer and an actual HIREDATE has
not yet been determined. Consequently, the HIREDATE column in the EMPLOYEE table is NULL. These employees
should be listed on the report with zero (0) years of seniority. The column representing the years of seniority should be labeled Seniority, capitalized exactly as shown.
Which of the following SELECT statements will produce the required results?

Explanation:

Item: 12 (Ref:1Z0-061.5.2.4)

SELECT NAME, HIREDATE, NVL(ROUND((SYSDATE - HIREDATE)/365,1),0) "Seniority" FROM EMPLOYEE ORDER BY hiredate DESC
SELECT NAME, HIREDATE, NVL(ROUND((SYSDATE - HIREDATE)/365,1),0) Seniority FROM EMPLOYEE ORDER BY 3
SELECT NAME, HIREDATE, NVL(ROUND((SYSDATE - HIREDATE)/365,1),0) "Seniority" FROM EMPLOYEE ORDER BY hiredate
SELECT NAME, HIREDATE, NVL(ROUND((HIREDATE - SYSDATE)/365),1),0) "Seniority" FROM EMPLOYEE ORDER BY hiredate

Answer:
SELECT NAME, HIREDATE, NVL(ROUND((SYSDATE - HIREDATE)/365,1),0) "Seniority" FROM EMPLOYEE ORDER BY hiredate

1Z0-061: Conversion and Conditionals

The following statement will produce the desired results:
SELECT NAME, HIREDATE, NVL(ROUND((SYSDATE - HIREDATE)/365,1),0) "Seniority" FROM EMPLOYEE ORDER BY hiredate
The hiredate will be subtracted from the sysdate giving the number of days since their hire date. Dividing that
by 365 will convert the answer from days to years. The ROUND function correctly rounds the number of years to 1
significant digit. The NVL function guarantees that if no value existed for hireday, the result would be displayed
as a 0.
If we sorted by hiredate DESC, the order of the names would be from the most recently hired employee to the
least recently hired, just the opposite of what was required.
If you ORDER BY 3, you are ordering by the 3rd column, which contains (after the computations are performed)
the years of seniority. The default order is ascending, so again, the output would not be in the correct order.
If you subtract hiredate - sysdate the result will be a negative number of days. This will become a negative
number of years. The output would not appear as requested.

1Z0-061: Conversion and Conditionals

The employee table contains these columns:
SQL> DESCRIBE employeeemp_id NUMBER(9)LAST_NAME VARCHAR2(20)FIRST_NAME VARCHAR2(20)COMM_PCT NUMBER(2)
You need to display the commission percentage for each employee followed by a percent sign (%). If an employee
does not receive a commission, the output should display No Comm. Employee commissions do not exceed 20
percent.
Which statement should you use to achieve these results?

Explanation:
None of the statements returns the desired results. Three functions are needed to return the desired results: the TO_CHAR, NVL, and RPAD functions. The TO_CHAR function converts any non-null comm_pct values to a
VARCHAR2 character string. The NVL function converts any null comm_pct values to the character string No
Comm. The RPAD function appends a percent sign to the end of the comm_pct value as the third character. To
return the desired results, use this SELECT statement:
SQL> SELECT emp_id, last_name, RPAD(NVL(TO_CHAR(comm_pct,'99'), 'No Comm'), 3,'% ')FROM employee;
The SELECT clause that contains NVL(comm_pct||'%', 'No Comm') does not return the desired results
because the percent sign is appended to the commission_pct column in the SELECT clause. The value % is
displayed when there is a null value.
The SELECT clause that contains NVL(TO_CHAR(comm_pct||'%'), 'No Comm') fails because of the
improper use of the concatenation operator within the TO_CHAR function parameters.
The SELECT clause that contains RPAD(NVL(TO_CHAR(comm_pct), 'No Comm'), '%') is incorrect
because it does not pass the RPAD function the correct number of arguments.
The TO_CHAR function is used to convert a number or date value to a VARCHAR2 character string using a format
model ('fmt'). The syntax for the TO_CHAR function is:
TO_CHAR(number, 'fmt')

Item: 13 (Ref:1Z0-061.5.2.3)

SELECT emp_id, last_name, NVL(comm_pct||'%', 'No Comm')FROM employee;
SELECT emp_id, last_name, NVL(TO_CHAR(comm_pct||'%'), 'No Comm')FROM employee;
SELECT emp_id, last_name, RPAD(NVL(TO_CHAR(comm_pct), 'No Comm'), '%') FROM employee;
None of the statements returns the desired results.

Answer:
None of the statements returns the desired results.

1Z0-061: Conversion and Conditionals

The NVL single row function is used to convert a null to a character string and can be used on any data type
including VARCHAR2 columns. The syntax for the NVL function is:
NVL(column|expression1, expression2)
The RPAD character function returns a left-justified value with a specified string of characters replicated as many
times as necessary to create a value that has a specified length (n). The syntax for the RPAD function is:
RPAD(column|expression, n, 'string')

1Z0-061: Conversion and Conditionals

The table called Customer contains a column called city, which is defined as VARCHAR2(15). The application
developer believes that a couple of cities actually are stored in a truncated manner because the name of the city, when written out in English, is more than 15 characters. Which SELECT statement will find the customer_name
and city where all 15 characters are being used to store the name of the city?

Explanation:
The SELECT statement with the conditional clause WHERE LENGTH(city)= 15 will find the customer name and
city name of each row in the table where all 15 characters of the city column are being used. The function
LENGTH allows you to find the number of characters stored in a particular column or variable. The correct syntax
of the LENGTH function is:
LENGTH(argument_name)
where argument_name is a character string.
If the value of LENGTH(city) equals 15, that implies that the maximum number of characters defined in the
VARCHAR2 data type are being used to store the value of city. The value of city could never be equal to anything
larger than 15 due to the column data type of VARCHAR2(15). However, it could be less than 15, since when you
store ROME as the value for city, it will only use four characters and the LENGTH function would return a 4.
VARCHAR2 data types do not store blanks or any other character to fill out the field to 15 characters. This is the
main advantage of this data type.
The conditional clauses which use the format city(LENGTH) are incorrect because that would be interpreted as
a function called city with an argument called LENGTTH.
The conditional clause which searches for cities with a length value greater than 15 is incorrect because the number of characters in a column defined as VARCHAR2(15) cannot exceed 15.

Item: 14 (Ref:1Z0-061.5.3.4)

SELECT customer_name, city FROM Customer WHERE city(LENGTH) = 15
SELECT customer_name, city FROM Customer WHERE LENGTH(city) > 15
SELECT customer_name, city FROM Customer WHERE LENGTH(city) = 15
SELECT customer_name, city FROM Customer WHERE city(LENGTH) = 15
It is impossible to answer this question because the column city is of variable length due to the VARCHAR2
column definition.

Answer:
SELECT customer_name, city FROM Customer WHERE LENGTH(city) = 15

1Z0-061: Conversion and Conditionals

1Z0-061: Conversion and Conditionals

